Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.707
Filtrar
2.
Angle Orthod ; 94(3): 328-335, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639454

RESUMO

OBJECTIVES: To evaluate maximal inspiratory (MIP) and expiratory (MEP) pressures, which are reflective of respiratory muscle strength, in skeletal Class II patients with different growth patterns (horizontal, average, and vertical) and to correlate those with airway dimension. MATERIALS AND METHODS: Patients with a Class II skeletal base seeking orthodontic treatment were assigned to the following groups: average, horizontal, and vertical growth pattern. The control group (n = 14) comprised patients with a Class I skeletal base and average growth pattern. Airway dimensions were obtained using cone-beam computed tomography scans, and a spirometer with a pressure transducer was used for assessment of MIP and MEP. Routine spirometry for assessment of lung function was also performed. RESULTS: No significant differences were found in maximal inspiratory and expiratory pressures for the study groups in comparison with the control group. Class I patients had significantly greater oropharyngeal and nasopharyngeal airway volumes compared with the study groups. No significant difference in minimal cross-section area of the airway was observed among groups. A weak positive correlation between maximal inspiratory pressure and airway volume was observed. CONCLUSIONS: Although Class I patients displayed significantly greater oropharyngeal and nasopharyngeal airway volumes, there was no significant difference in respiratory muscle strength or airway function between Class II patients with different growth patterns and the Class I control group. The findings underscore the significance of exploring factors beyond craniofacial growth patterns that may contribute to sleep-related breathing disorders.


Assuntos
Nasofaringe , Sistema Respiratório , Humanos , Orofaringe/diagnóstico por imagem , Músculos Respiratórios , Respiração , Tomografia Computadorizada de Feixe Cônico/métodos
3.
PLoS One ; 19(4): e0300285, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38564604

RESUMO

Previous research on stabilization methods for microbiome investigations has largely focused on human fecal samples. There are a few studies using feces from other species, but no published studies investigating preservation of samples collected from cattle. Given that microbial taxa are differentially impacted during storage it is warranted to study impacts of preservation methods on microbial communities found in samples outside of human fecal samples. Here we tested methods of preserving bovine fecal respiratory specimens for up to 2 weeks at four temperatures (room temperature, 4°C, -20°C, and -80°C) by comparing microbial diversity and community composition to samples extracted immediately after collection. Importantly, fecal specimens preserved and analyzed were technical replicates, providing a look at the effects of preservation method in the absence of biological variation. We found that preservation with the OMNIgene®â€¢GUT kit resulted in community structure most like that of fresh samples extracted immediately, even when stored at room temperature (~20°C). Samples that were flash-frozen without added preservation solution were the next most representative of original communities, while samples preserved with ethanol were the least representative. These results contradict previous reports that ethanol is effective in preserving fecal communities and suggest for studies investigating cattle either flash-freezing of samples without preservative or preservation with OMNIgene®â€¢GUT will yield more representative microbial communities.


Assuntos
DNA , Manejo de Espécimes , Bovinos , Humanos , Animais , Manejo de Espécimes/métodos , Fezes/química , DNA/análise , Etanol/análise , Sistema Respiratório , Genômica , RNA Ribossômico 16S/genética
4.
Clin Oral Investig ; 28(5): 252, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627272

RESUMO

OBJECTIVE: Craniofacial anomalies are widely discussed as predisposing factors of breathing disorders. Since many more cofactors exist, this study investigated the association between maxillary micrognathia and morphological changes of posterior airway space and adenoids in these patients. MATERIAL AND METHODS: Cephalometric radiographs of n = 73 patients were used for data acquisition. The patients were divided into two groups according to certain skeletal characteristics: maxillary micrognathia (n = 34, 16 female, 18 male; mean age 10.55 ± 3.03 years; defined by a SNA angle < 79°) and maxillary eugnathia (n = 39, 19 female, 20 male; mean age 10.93 ± 3.26 years; defined by a SNA angle > 79°). The evaluation included established procedures for measurements of the maxilla, posterior airway space and adenoids. Statistics included Kolmogorov-Smirnov-, T- and Mann-Whitney-U-Tests for the radiographs. The level of significance was set at p < 0.05. RESULTS: The cephalometric analysis showed differences in the superior posterior face height and the depth of the posterior airway space at palatal level among the two groups. The depth of the posterior airway space at mandibular level was the same for both groups, just as the size of the area taken by adenoids in the nasopharynx. CONCLUSIONS: Skeletal anomalies affect the dimension of the posterior airway space. There were differences among the subjects with maxillary micrognathia and these with a normal maxilla. However, the maxilla was only assessed in the sagittal direction, not in the transverse. This study showed that the morphology of the maxilla relates to the posterior airway space whereas the adenoids seem not to be affected. CLINICAL RELEVANCE: Maxillary micrognathia is significantly associated with a smaller depth of the posterior airway space at the palatal level compared to patients with maxillary eugnathia.


Assuntos
Tonsila Faríngea , Micrognatismo , Humanos , Masculino , Feminino , Criança , Adolescente , Micrognatismo/diagnóstico por imagem , Nasofaringe , Maxila/diagnóstico por imagem , Sistema Respiratório , Cefalometria/métodos
7.
BMC Microbiol ; 24(1): 138, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658823

RESUMO

BACKGROUND: Co-infection with other pathogens in coronavirus disease 2019 (COVID-19) patients exacerbates disease severity and impacts patient prognosis. Clarifying the exact pathogens co-infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is premise of the precise treatment for COVID-19 patients. METHODS: Sputum samples were collected from 17 patients in the COVID-19 positive group and 18 patients in the COVID-19 negative group. DNA extraction was performed to obtain the total DNA. Sequencing analysis using 16S and ITS rRNA gene was carried out to analyze the composition of bacterial and fungal communities. Meanwhile, all the samples were inoculated for culture. RESULTS: We did not observe significant differences in bacterial composition between the COVID-19 positive and negative groups. However, a significantly higher abundance of Candida albicans was observed in the upper respiratory tract samples from the COVID-19 positive group compared to the COVID-19 negative group. Moreover, the Candida albicans strains isolated from COVID-19 positive group exhibited impaired secretion of aspartyl proteinases. CONCLUSION: COVID-19 positive patients demonstrate a notable increase in the abundance of Candida albicans, along with a decrease in the levels of aspartyl proteinases, indicating the alteration of microbiota composition of upper respiratory tract.


Assuntos
Bactérias , COVID-19 , Candida albicans , Microbiota , Sistema Respiratório , SARS-CoV-2 , Escarro , Humanos , COVID-19/microbiologia , COVID-19/virologia , Microbiota/genética , Masculino , Candida albicans/isolamento & purificação , Candida albicans/genética , Feminino , Escarro/microbiologia , Escarro/virologia , Pessoa de Meia-Idade , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Sistema Respiratório/microbiologia , Sistema Respiratório/virologia , Idoso , RNA Ribossômico 16S/genética , Adulto , Coinfecção/microbiologia , Coinfecção/virologia
8.
Sci Rep ; 14(1): 9056, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643191

RESUMO

The impact of evolving treatment regimens, airway clearance strategies, and antibiotic combinations on the incidence and prevalence of respiratory infection in cystic fibrosis (CF) in children and adolescents remains unclear. The incidence, prevalence, and prescription trends from 2002 to 2019 with 18,339 airway samples were analysed. Staphylococcus aureus [- 3.86% (95% CI - 5.28-2.43)] showed the largest annual decline in incidence, followed by Haemophilus influenzae [- 3.46% (95% CI - 4.95-1.96)] and Pseudomonas aeruginosa [- 2.80%95% CI (- 4.26-1.34)]. Non-tuberculous mycobacteria and Burkholderia cepacia showed a non-significant increase in incidence. A similar pattern of change in prevalence was observed. No change in trend was observed in infants < 2 years of age. The mean age of the first isolation of S. aureus (p < 0.001), P. aeruginosa (p < 0.001), H. influenza (p < 0.001), Serratia marcescens (p = 0.006) and Aspergillus fumigatus (p = 0.02) have increased. Nebulised amikacin (+ 3.09 ± 2.24 prescription/year, p = 0.003) and colistin (+ 1.95 ± 0.3 prescriptions/year, p = 0.032) were increasingly prescribed, while tobramycin (- 8.46 ± 4.7 prescriptions/year, p < 0.001) showed a decrease in prescription. Dornase alfa and hypertonic saline nebulisation prescription increased by 16.74 ± 4.1 prescriptions/year and 24 ± 4.6 prescriptions/year (p < 0.001). There is a shift in CF among respiratory pathogens and prescriptions which reflects the evolution of cystic fibrosis treatment strategies over time.


Assuntos
Fibrose Cística , Pneumonia , Infecções por Pseudomonas , Criança , Lactente , Humanos , Adolescente , Fibrose Cística/complicações , Fibrose Cística/epidemiologia , Fibrose Cística/microbiologia , Staphylococcus aureus , Sistema Respiratório/microbiologia , Antibacterianos/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Pneumonia/tratamento farmacológico , Pseudomonas aeruginosa
9.
J Vis Exp ; (205)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38587373

RESUMO

cAMP Difference Detector In Situ (cADDis) is a novel biosensor that allows for the continuous measurement of cAMP levels in living cells. The biosensor is created from a circularly permuted fluorescent protein linked to the hinge region of Epac2. This creates a single fluorophore biosensor that displays either increased or decreased fluorescence upon binding of cAMP. The biosensor exists in red and green upward versions, as well as green downward versions, and several red and green versions targeted to subcellular locations. To illustrate the effectiveness of the biosensor, the green downward version, which decreases in fluorescence upon cAMP binding, was used. Two protocols using this sensor are demonstrated: one utilizing a 96-well plate reading spectrophotometer compatible with high-throughput screening and another utilizing single-cell imaging on a fluorescent microscope. On the plate reader, HEK-293 cells cultured in 96-well plates were stimulated with 10 µM forskolin or 10 nM isoproterenol, which induced rapid and large decreases in fluorescence in the green downward version. The biosensor was used to measure cAMP levels in individual human airway smooth muscle (HASM) cells monitored under a fluorescent microscope. The green downward biosensor displayed similar responses to populations of cells when stimulated with forskolin or isoproterenol. This single-cell assay allows visualization of the biosensor location at 20x and 40x magnification. Thus, this cAMP biosensor is sensitive and flexible, allowing real-time measurement of cAMP in both immortalized and primary cells, and with single cells or populations of cells. These attributes make cADDis a valuable tool for studying cAMP signaling dynamics in living cells.


Assuntos
AMP Cíclico , Sistema Respiratório , Humanos , AMP Cíclico/metabolismo , Isoproterenol/farmacologia , Colforsina/farmacologia , Células HEK293 , Sistema Respiratório/metabolismo
10.
Science ; 384(6691): 30-31, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574157

RESUMO

Bronchoconstriction causes epithelial cell extrusion that promotes airway inflammation.


Assuntos
Asma , Broncoconstrição , Humanos , Sistema Respiratório , Inflamação , Células Epiteliais
11.
BMC Biol ; 22(1): 93, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654335

RESUMO

BACKGROUND: The human upper respiratory tract (URT) microbiome, like the gut microbiome, varies across individuals and between health and disease states. However, study-to-study heterogeneity in reported case-control results has made the identification of consistent and generalizable URT-disease associations difficult. RESULTS: In order to address this issue, we assembled 26 independent 16S rRNA gene amplicon sequencing data sets from case-control URT studies, with approximately 2-3 studies per respiratory condition and ten distinct conditions covering common chronic and acute respiratory diseases. We leveraged the healthy control data across studies to investigate URT associations with age, sex, and geographic location, in order to isolate these associations from health and disease states. CONCLUSIONS: We found several robust genus-level associations, across multiple independent studies, with either health or disease status. We identified disease associations specific to a particular respiratory condition and associations general to all conditions. Ultimately, we reveal robust associations between the URT microbiome, health, and disease, which hold across multiple studies and can help guide follow-up work on potential URT microbiome diagnostics and therapeutics.


Assuntos
Microbiota , RNA Ribossômico 16S , Sistema Respiratório , Humanos , Microbiota/genética , RNA Ribossômico 16S/genética , Sistema Respiratório/microbiologia , Doenças Respiratórias/microbiologia , Estudos de Casos e Controles , Masculino , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Feminino
13.
Artigo em Inglês | MEDLINE | ID: mdl-38524398

RESUMO

Purpose: The heterogeneity of clinical features in COPD at stable state has been associated with airway microbiota. Blood eosinophil count (BEC) represents a biomarker for a pejorative evolution of COPD, including exacerbations and accelerated FEV1 decline. We aimed to analyse the associations between BEC and airway microbiota in COPD at stable state. Patients and Methods: Adult COPD patients at stable state (RINNOPARI cohort) were included and characterised for clinical, functional, biological and morphological features. BEC at inclusion defined 2 groups of patients with low BEC <300/mm3 and high BEC ≥300/mm3. Sputa were collected and an extended microbiological culture was performed for the identification of viable airway microbiota. Results: Fifty-nine subjects were included. When compared with the low BEC (n=40, 67.8%), the high BEC group (n=19, 32.2%) had more frequent exacerbations (p<0.001) and more pronounced cough and sputum (p<0.05). The global composition, the number of bacteria per sample and the α-diversity of the microbiota did not differ between groups, as well as the predominant phyla (Firmicutes), or the gender repartition. Conclusion: In our study, high BEC in COPD at stable state was associated with a clinical phenotype including frequent exacerbation, but no distinct profile of viable airway microbiota compared with low BEC.


Assuntos
Eosinofilia , Microbiota , Doença Pulmonar Obstrutiva Crônica , Adulto , Humanos , Eosinófilos , Progressão da Doença , Sistema Respiratório , Contagem de Leucócitos , Escarro/microbiologia
14.
Cells ; 13(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38534319

RESUMO

Chronic Obstructive Pulmonary Disease (COPD) is a pathological condition of the respiratory system characterized by chronic airflow obstruction, associated with changes in the lung parenchyma (pulmonary emphysema), bronchi (chronic bronchitis) and bronchioles (small airways disease). In the last years, the importance of phenotyping and endotyping COPD patients has strongly emerged. Metabolomics refers to the study of metabolites (both intermediate or final products) and their biological processes in biomatrices. The application of metabolomics to respiratory diseases and, particularly, to COPD started more than one decade ago and since then the number of scientific publications on the topic has constantly grown. In respiratory diseases, metabolomic studies have focused on the detection of metabolites derived from biomatrices such as exhaled breath condensate, bronchoalveolar lavage, and also plasma, serum and urine. Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy are powerful tools in the precise identification of potentially prognostic and treatment response biomarkers. The aim of this article was to comprehensively review the relevant literature regarding the applications of metabolomics in COPD, clarifying the potential clinical utility of the metabolomic profile from several biologic matrices in detecting biomarkers of disease and prognosis for COPD. Meanwhile, a complete description of the technological instruments and techniques currently adopted in the metabolomics research will be described.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Sistema Respiratório/metabolismo , Metabolômica/métodos , Biomarcadores/metabolismo , Espectrometria de Massas/métodos
16.
Eur J Pharm Biopharm ; 198: 114266, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499255

RESUMO

Design of inhalable mRNA therapeutics is promising because local administration in the respiratory tract is minimally invasive and induces a local response. However, several challenges related to administration via inhalation and respiratory tract barriers have so far prevented the progress of inhaled mRNA therapeutics. Here, we investigated factors of importance for lipid nanoparticle (LNP)-mediated delivery of mRNA to the respiratory tract. We hypothesized that: (i) the PEG-lipid content is important for providing colloidal stability during aerosolization and for mucosal delivery, (ii) the PEG-lipid contentinfluences the expression of mRNA-encoded protein in the lungs, and (iii) the route of administration (nasal versus pulmonary) affects mRNA delivery in the lungs. In this study, we aimed to optimize the PEG-lipid content for mucosal delivery and to investigatethe effect of administration route on the kinetics of protein expression. Our results show that increasing the PEG-lipid content improves the colloidal stability during the aerosolization process, but has a negative impact on the transfection efficiencyin vitro. The kinetics of protein expressionin vivois dependent on the route of administration, and we found that pulmonaryadministration of mRNA-LNPs to mice results inmore durable protein expression than nasaladministration. These results demonstrate that the design of the delivery system and the route of administration are importantfor achieving high mRNA transfection efficiency in the respiratory tract.


Assuntos
Nanopartículas , Sistema Respiratório , Animais , Camundongos , Lipossomos , RNA Mensageiro , Lipídeos
17.
J Comp Pathol ; 210: 15-24, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479335

RESUMO

Feline infectious peritonitis (FIP) is an important cause of death in cats. Thoracic manifestations are less common than abdominal manifestations, and FIP-associated respiratory disease is poorly documented. This study aimed to investigate pathological findings in the respiratory tract of cats with FIP and the occurrence and distribution of feline coronavirus antigen in the respiratory tract using immunohistochemistry. A retrospective study was carried out on 112 cats with FIP, of which 66 had inflammatory histological lesions in the respiratory tract (58.9%) and were included in this study. Three major gross patterns were defined: marked fibrin deposition in the thoracic cavity with lung atelectasis; marked fibrin deposition in the thoracic cavity with lung pyogranulomas; and lung pyogranulomas without thoracic effusion. Histological analysis revealed primary lesions in the visceral pleura and lung parenchyma at a similar frequency, with multifocal to diffuse presentations. Marked lesions were commonly observed. Five major histological patterns were defined: pleuritis; pleuritis and vasculitis/perivascular injury in the lung parenchyma; pleuritis and pneumonia; perivascular injury in the parenchyma without pleuritis; and pneumonia without pleuritis. In the pleura and pulmonary parenchyma, FIP virus antigen was detected in perivascular and peribronchial macrophages and in macrophages within bronchial-associated lymphoid tissue and foci of necrosis and inflammation in the pleura and lung parenchyma. Co-infections with retroviruses were detected in 47 cats (71.2%), mainly with feline leukemia virus (62.2%). Although FIP is a systemic disease, some cats developed significant lesions in the thoracic cavity, including involvement of the upper respiratory tract and presenting respiratory signs, without other classic signs of FIP. This work advances our knowledge of FIP in the respiratory system, helping veterinarians to recognize the various presentations of this disease.


Assuntos
Doenças do Gato , Peritonite Infecciosa Felina , Pleurisia , Pneumonia , Gatos , Animais , Estudos Retrospectivos , Sistema Respiratório/patologia , Pleurisia/veterinária , Pneumonia/veterinária , Fibrina
18.
Microb Pathog ; 190: 106632, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537762

RESUMO

With the widespread introduction of the Hib conjugate vaccine, Nontypeable Haemophilus influenzae (NTHi) has emerged as the predominant strain globally. NTHi presents a significant challenge as a causative agent of chronic clinical infections due to its high rates of drug resistance and biofilm formation. While current research on NTHi biofilms in children has primarily focused on upper respiratory diseases, investigations into lower respiratory sources remain limited. In this study, we collected 54 clinical strains of lower respiratory tract origin from children. Molecular information and drug resistance features were obtained through whole gene sequencing and the disk diffusion method, respectively. Additionally, an in vitro biofilm model was established. All clinical strains were identified as NTHi and demonstrated the ability to form biofilms in vitro. Based on scanning electron microscopy and crystal violet staining, the strains were categorized into weak and strong biofilm-forming groups. We explored the correlation between biofilm formation ability and drug resistance patterns, as well as clinical characteristics. Stronger biofilm formation was associated with a longer cough duration and a higher proportion of abnormal lung imaging findings. Frequent intake of ß-lactam antibiotics might be associated with strong biofilm formation. While a complementary relationship between biofilm-forming capacity and drug resistance may exist, further comprehensive studies are warranted. This study confirms the in vitro biofilm formation of clinical NTHi strains and establishes correlations with clinical characteristics, offering valuable insights for combating NTHi infections.


Assuntos
Antibacterianos , Biofilmes , Infecções por Haemophilus , Haemophilus influenzae , Biofilmes/crescimento & desenvolvimento , Humanos , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/fisiologia , Haemophilus influenzae/isolamento & purificação , Haemophilus influenzae/genética , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/classificação , Antibacterianos/farmacologia , Pré-Escolar , Feminino , Masculino , Criança , Lactente , Testes de Sensibilidade Microbiana , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia , Microscopia Eletrônica de Varredura , Farmacorresistência Bacteriana , Sistema Respiratório/microbiologia , Sistema Respiratório/virologia
19.
Environ Sci Technol ; 58(14): 6083-6092, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38547129

RESUMO

Despite significant advances in understanding the general health impacts of air pollution, the toxic effects of air pollution on cells in the human respiratory tract are still elusive. A robust, biologically relevant in vitro model for recapitulating the physiological response of the human airway is needed to obtain a thorough understanding of the molecular mechanisms of air pollutants. In this study, by using 1-nitropyrene (1-NP) as a proof-of-concept, we demonstrate the effectiveness and reliability of evaluating environmental pollutants in physiologically active human airway organoids. Multimodal imaging tools, including live cell imaging, fluorescence microscopy, and MALDI-mass spectrometry imaging (MSI), were implemented to evaluate the cytotoxicity of 1-NP for airway organoids. In addition, lipidomic alterations upon 1-NP treatment were quantitatively analyzed by nontargeted lipidomics. 1-NP exposure was found to be associated with the overproduction of reactive oxygen species (ROS), and dysregulation of lipid pathways, including the SM-Cer conversion, as well as cardiolipin in our organoids. Compared with that of cell lines, a higher tolerance of 1-NP toxicity was observed in the human airway organoids, which might reflect a more physiologically relevant response in the native airway epithelium. Collectively, we have established a novel system for evaluating and investigating molecular mechanisms of environmental pollutants in the human airways via the combinatory use of human airway organoids, multimodal imaging analysis, and MS-based analyses.


Assuntos
Poluentes Atmosféricos , Pirenos , Sistema Respiratório , Humanos , Reprodutibilidade dos Testes , Organoides , Imagem Multimodal
20.
Virol J ; 21(1): 61, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454485

RESUMO

BACKGROUND: Airway bleeding events are a rare incident in SARS-CoV-2-infected patients after tracheostomies. We aimed to explore the correlation between airway bleeding and SARS-CoV-2 infection and evaluate the consistency of SARS-CoV-2 RNA test results in the upper and lower airway samples from patients after tracheostomies. METHODS: Forty-four patients after temporary or permanent tracheostomy were divided into a positive group (29 patients) and a negative group (15 patients) based on the SARS-CoV-2 RNA test results of their oropharyngeal swabs. The oropharyngeal and tracheal swabs of the positive group were re-collected for SARS-CoV-2 RNA detection. Demographic and clinical characteristics and airway bleeding events were recorded for all enrolled patients. RESULTS: Airway bleeding was reported in eleven patients of the positive group (11/29), with seven displaying bloody sputum or hemoptysis, and four featuring massive sputum crust formation in the trachea that resulted in dyspnea, and only one patient in the negative group (1/15), with a significant difference in the airway bleeding rate (37.9% vs. 6.7%, p < 0.05). The SARS-CoV-2 RNA test results showed a statistical difference in cycle threshold (Ct) values between oropharyngeal swabs and tracheal swabs (p < 0.05). CONCLUSIONS: After tracheostomies, patients are more susceptible to airway bleeding if they are infected with SARS-CoV-2. The findings signify that in addition to droplet transmission through tracheostoma, SARS-CoV-2 may infect the oropharynx by airborne and close contact transmission, and that given the higher viral load and longer infection time in the trachea, tracheal swabs are more reliable for SARS-CoV-2 detection in these patients.


Assuntos
COVID-19 , Humanos , Traqueostomia/efeitos adversos , SARS-CoV-2/genética , RNA Viral/genética , Sistema Respiratório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...